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Transverse (flexural) vibrations of straight fins are observed in the supersonic grills 
of gas-dynamic CO 2 lasers (CO2-GDL). These oscillations cause the gas flow at the entrance 
to the lasing region to be significantly nonuniform. There have even been cases of fatigue 
failure of the fins. In order to prevent such vibrations remote-controlled spacers are in- 
stalled in the grill structure in the subsonic section of the interfin channel, but this 
gives rise to entropy nonuniformities owing to the dissipative processes accompanying flow 
past these spacers. 

A qualitative explanation of one mechanism for excitation of vibrations of straight 
fins in the supersonic grill of a GDL is given in [i, 2]. It was assumed that the fins 
vibrate "rigidly" with the characteristic frequency. Then, under certain conditions the 
transverse force arising as a result of the excitation of longitudinal acoustic vibrations 
of the gas in the subsonic part of the channel has the same phase shift (relative to the 
phase of the fin vibrations), ensuring that energy flows from the gas flow to the fin. The 
transverse self-excited vibrations of the fins, due to the longitudinal acoustic vibrations 
of the gas, were termed acoustic flutter [i, 2]. 

In the present paper we formulate a more accurate mathematical model of acoustic flutter. 
We derive more accurate boundary conditions for the acoustic problem and, in contrast to [i, 
2], we take into account the effect of the acoustic longitudinal waves on the fin motion it- 
self (in the transverse direction). In other words, feedback is introduced into the system 
consisting of a fin (mechanical component) and acoustic vibrations of the gas (acoustic com- 
ponent). This model, in contrast to the preceding one, made it possible to determine the 
rate of growth of self-excited vibrations in it. 

i. Formulation of the Acoustic Problem. As in [i, 2], we assume that the motion of a 
fin in the grill reduces to displacement of the fin as a whole in the direction of the y axis 
(see Fig. i), and each fin vibrates in antiphase with the adjacent fin. In [i], it was estab- 
lished by means of numerical modeling that the contribution of the supersonic part of the in- 
terfin channel to exchange of energy between the gas flow and a fin is relatively small (less 
than 1%). This makes it possible to limit the theoretical analysis only to the subsonic part 
of the interfin channel. For this reason, the problem of acoustic flutter of the supersonic 
grill of a GDL can be formulated in the model setup as follows. 

The subsonic part of the interfin channel (see Fig. i) consists of a straight section of 
length L and height h 0 = const and a short tapered section (s << L). The critical (minimum) 
section of height h, 0 is followed by the supersonic (expanding) part of the interfin channel. 
Let the transverse motion of the fin be given: h(t) = h 0 + Ah(t). Our aim is to reduce the 
problem of nonstationary gas dynamics for the interfin channel to a linear problem for small 
disturbances on the rectilinear section (0 < x < L). The gas flow in this section with h << 
L can be described by the system of equations of one-dimensional gas dynamics with time-vary- 
ing cross section h(t). The boundary condition on the pressure disurbance p'(x, t) at x = 0 
is p'(0, t) = 0. 

Assume that for the section [L, L + s of the channel the condition of the flow is 
quasistationary. This happens when the characteristic frequencies of the perturbations of 
the gas parameters in the flow are much less than a/s where a is the velocity of sound in 
the gas. Then it turns out that a boundary condition can also be imposed at x = L directly 
in front of the critical section of the interfin channel. We label the density 0, the pres- 
sure p, the temperature T, and the gas flow velocity u with indices * and L, if they refer 
to the critical section x = L + E and to the section x = L. We label with the index 0 quanti- 
ties in the undisturbed flow and with a prime the perturbations of these quantities. 
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Fig. i 

Since the flow in the section L < x < L + s is quasistationary, the condition that the 
flow rates be matched (puh), = (pub) L should be satisfied and there exist well-knownexpressions re- 
lating the values of the quantities in the critical section and in the section x = L: 

2 2tR T+ 

(?-- i) U2)] II(~-I) 

Hence, after corresponding transformations, we obtain the relations for the perturbations: 

( p' u" = t-- + +--; K+-CJ ~ ~'o)h,o ~,o O,o 
(i.i) 

' [ l ~,o ~+z_~_t ~ -  g + (v-l)M~ 5~o L; ( i . 2 )  

jr'] 
(1.3) 

Here y is the adiabatic index of the gas; R is the gas constant; and M 0 = Uo/a is the Mach 
number (usually, M 0 << i). 

Assuming that the processes are adiabatic and taking into account the equation of state 
of the gas p = pRT, we find from Eqs. (1.1)-(1.3) the boundary condition for the section x = L: 

~u ' /uo - -  ~P ' /Po = ~lAh,"h*o, 

w h e r e  a = i - -  2 y M ~ / ( 2  + (7 - -  t ) M ~ ) ;  ~ = ( t  - -  t / 7 ) ( 2  - -  M ] ) / ( 2  + ( ? -  l )  M~); ~1 = ( l  - -  h,dho). 

2. Analysis of the Mathematical Model. The system of equations of motion of the gas 
(equations of acoustics in a moving gas), linearized with respect to the perturbations, in 
the formulation of the problem under consideration and the boundary conditions are as follows 
(the primes are dropped here and below): 

8u/Ot + UoOU/Ox -~ (t/po)Sp/Sx = 0; 

Op/Ot -]- uoOp/Ox + ypoOu/Ox = 0; 

(2.1) 

(2.2) 
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p(O, t) = O; ( 2 . 3 )  

au  (L ,  t)/u o - -  BP (L, t)/po = ~ Ah (t)/h.o. ( 2 . 4 )  

In  t h e  a c o u s t i c s  e q u a t i o n s  ( 2 . 1 )  and ( 2 . 2 )  t h e  t e r m s  c o n t a i n i n g  h ( t ) / h  0, r e l a t e d  w i t h  t h e  
change  in  t h e  c r o s s  s e c t i o n  o f  t h e  c h a n n e l ,  a r e  o m i t t e d ;  t h e  c o n t r i b u t i o n  o f  t h e s e  t e r m s  t o  
t h e  e x c i t a t i o n  o f  a c o u s t i c  v i b r a t i o n s  i s  s m a l l  compared  w i t h  t h e  c o n t r i b u t i o n  o f  t h e  r i g h t -  
hand  t e r m  in  t h e  b o u n d a r y  c o n d i t i o n  ( 2 . 4 ) .  

L e t  t h e  e q u a t i o n  f o r  t h e  change  in  t h e  gap z ( t )  = ~ h ( t )  d e s c r i b e  t h e  m e c h a n i c a l  component  
o f  o u r  mode l :  

mz + kz = ], 
( 2 . 5 )  

where 

L 

] = 2 H  S p d x  ( 2 . 6 )  
0 

is the lateral force exerted by the perturbation of the gas pressure on the fin; m, k, and H 
are the mass, spring constant, and width, respectively, of a fin. 

We seek the solution of the system of equations (2.1)-(2.6) in the form u(t, x) = 
U(x)  exp (~t), p( t ,  x)  = P ( x )  exp (~t), z(t)  = Z exp (~t), ](t) = F exp (~t) (X i s  a complex  number ) .  
Then we w r i t e  t h e  s y s t e m  ( 2 . 1 ) - ( 2 . 6 )  as  

~ U  ~ uoOU/Ox ~ ( t /po)OP/Ox = O; (2 .1 ' )  

s ~ uoOP/Ox + 7poOU/Ox = O; 

P(0) = O; 

( 2 . 2 ' )  

(2.3') 

a U  (L) ,u  o - -  pP (L) /p  o = ~lZ/z o (z o = h,o); ( 2 . 4 ' )  

~2rnZ + k Z  = F; ( 2 . 5  ' ) 

L 

F = 2 H 2 P d x .  ( 2 . 6 ' )  
0 

Here 

The solution of the system (2.1') and (2.2') has the form 

U = A l e x p  ( ~ l x ) + A 2 e x p  (~2x), P = C lexp  ( ~ l X ) + C 2 e x p  (~2x). 

are found from Eqs. 
and (2.4') we obtain 

( 2 i 7 )  

P~I ---- k / (a  - -  uo), ~t, ---- --~./(a + uo) ( 2 . 8 )  

( 2 . 1 ' )  and ( 2 . 2 ' ) .  Tak ing  i n t o  a c c o u n t  t h e  b o u n d a ry  c o n d i t i o n s  ( 2 . 3 ' )  

C1 = - -  C2 = - -  ~lZz--o 1 poa~M/g ()~), ( 2 . 9 )  
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where 

g(~) = exp (9,L) -p • exp ( ~ L ) ;  

• = (a  - -  ?~M)/ (a  + ?~M), M -~ Uo/a. 

(2.10) 

(2.11) 

According to Eqs. 

Substituting Eqs. 

( 2 . 6 ' )  and  ( 2 . 7 ) ,  

F = 2HC~(exp ( ~ L ) - - l ) / ~ - 6 2 H C s ( e x p  ( ~ 2 L ) - - t ) / ~ , .  ( 2 . 1 2 )  

( 2 . 9 )  a n d  ( 2 . 1 2 )  i n t o  Eq.  ( 2 . 5 ' ) ,  we f i n d  an  e q u a t i o n  f o r  t h e  e i g e n v a l u e s  

a(x) = 7,'- + ~ + e~(x)/g(~) = o. ( 2 . 1 3 )  

H e r e  

~(%) ---- (exp ( ,~L) - -  I)/~1 - -  (exp (~,L) - -  i)/~2, 

= ~k~'-m, ~ = 2H~la~MPoz--olm - 1  (a  + ?~M)-L  
( 2 . 1 4 )  

Self-excitation in the model under consideration is observed only if the function G(I) 
is equal to zero in the right-hand half-space of the complex variable ~~ The root with the 
largest real component determines the rate of growth of the self-excitation. 

We first find the poles of the function G(I). From Eqs. (2.8) and (2.10) we obtain the 
following expression for all roots of the function g(%): 

%n a (1 ~LM2)[In = • + i n ( 2 n  + 1)], n . . . .  , - - l , 0 , 1  . . . .  (2.15) 

All these roots are first order. We note that 

~(E)91 - -  g(Z) = [(t -~ M)/((I - -  M) - -  • exp (~2L) - -  2/'(1 - -  M). ( 2 . 1 5 )  

A l l  p o i n t s  a t  w h i c h  t h e  r i g h t - h a n d  s i d e  o f  Eq.  ( 2 . 1 5 )  v a n i s h e s  a r e  e x p r e s s e d  by  t h e  f o r m u l a  

%~ = (a/L) (i + M) (In U 1 + 2~im) ,  m . . . .  , - -  t ,  O, 1 . . . . .  ( 2 . 1 7 )  

w h e r e  

ul = 0,511 + M - -  •  M)L ( 2 . 1 8 )  

We see from Eqs~ (2.11), (2.15), (2.17), and (2.18) that (M << I) the inequality Re A n > Re 
l'm, is satisfied, i.e., the sets (2.15) and (2.17) do not have common points. For this 
reason, it follows from Eq. (2.16) that the roots of the function g(l) are not the roots of 
the function ~(~). The function ~(~) is regular in the entire complex plane of the variable 
~. Therefore, the points A n determined by the formula (2.15) and only these points are poles 
of the function G(I). 

For arbitrary ~, 6 > 0 we designate by O(~, 6) a circle of radius 6 centered at the 
point ~. Let 61 = 0.51~ 2 -- ~11and 6 o = 0.5 min Iln -- i~ I > 0. It follows from the func- 

tion G(~) that for 6 = ~min (60, ~I) and sufficiently small e outside the region 

Q6= U o(x,,,6) UO(~,~)UO(_~Q,  6 ) 
n = - - o o  

this function will not have any roots. 
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According to Eq. (2.13), the roots of the function G(X) satisfy the equations ~ = R• 
Rn(E), n = ..., --~, 0, ~,. .... where 

~(X) . ( 2 . 1 9 )  R~(X) = X~--~(z~+eD~n(z ), 

�9 (~) ( 2 . 2 0 )  R •  = + _ i e - - e ( z  • ~e)g(Z)" 

Here Yn(M = g(l)/(%--%n) is a regular function in the region O(%n, ~), since g(~) has a 
first order root at the point I n. For sufficiently small e the functions R• and Rn(l) 
realize a contraction of the regions O(~i~, ~), 0(~ n, ~)(n = ..., --~, O, 1 .... ) into themselves, 
respectively. Thus, to a first approximation in e, the roots of the function G(X) will be 
given by the formulas 

~ (~.) 
~v~ ~, ~ -  (~,+ ~)y~ (~), 

(_+ ~ )  
N +  ~ ___ i~ - -  e +_ 2i~g (+ i~) " 

S i n c e  ~ < i ,  a c c o r d i n g  t o  Eq.  ( 2 . 1 5 ) ,  Re Xn = c o n s t  < 0 f o r  a l l  n .  F o r  t h i s  r e a s o n ,  f o r  
s u f f i c i e n t l y  s m a l l  e o n l y  t h e  r o o t s  N+ c a n  h a v e  a p o s i t i v e  r e a l  c o m p o n e n t .  

S u b s t i t u t i n g  i n t o  t h e  f o r m u l a  ( 2 . 2 1 )  t h e  e x p r e s s i o n s  ( 2 . 1 0 )  and  ( 2 . 1 4 )  and  t h e n  Eq.  
( 2 . 8 ) ,  we f i n d  t i e N ~  ..~ 0 .5ea f~ :~D/E ,  w h e r e  

( 2 . 2 1 )  

D = [(l - -  M) + x (1 + M)] + [(t + M) + • (1 - -  M)] cos t --2YM ~ -  2 cos I -------MY 

Y ; E = ( l - - •  2 r  ~ .  - -  2u cos t + ~i 1 --  M 2] ' Y = g]L/a. 

For M << i 

'D 2 (1 -}- x) cos Y (cos Y --  t) 
(t - -  z) ~ + 4x c0s2Y 

( 2 . 2 2 )  

whence for the maximum possible rate of growth of self-excitation (for fixed x ) we obtain 

the expression 

Be N •  ~ 0,5eaO.-2/(l - -  z) = 0 , 5 H ~ - 1 ~  -1 a3p0zolm-lQ.-~. 

According to Eq. (2.22), Re N_+ > 0 for 0.5uq-2nm<Y<l.5~-~2~m, m =0. i, 2 .... Determin- 
ing a more accurate value of D to second order in M inclusively ((i -- • ~ M), we have D 
,~(l~q - • cos Y(cos Y -- i) -5 2M(i -- • sin Y--sin 2 Y) . Hence we find more accurately the intervals 
~f values of X in which ReN+_ > 0: 0.5~--~(0.5~-- i q- 2~m) Jr 2~m<Y< 1.5~-~(1.5~-- i ~ 2~m) + 

2zm. Here ~ ---- M(I -- • • ~). The expression for these intervals is valid for 2~m~ << I, m ---- 0, 1 ..... 

Remark. For small values of 6 o the requirement that e be small becomes more stringent. 
However it can be weakened, if instead of the functions (2.19) and (2.20) we study the map- 

ping 

X~ +_ in . / ( t k  -V- tf2)'2 q~(;~) 
2 + V 4 e (~, + if2) Yh (~,)' 

where k designates the values for which [%k-b iQ[----2~ 0 . The stationary points of such 
a mapping are also roots of the function G(X). With the help of the expression (2.23) it 
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can be proved that for some c, e0 > 0 with e < e0 the rate of growth of the self-excitation 
is estimated above, uniformly in 6 o > 0, by the quantity cyst. 
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